


Syllabus

> Introduction.
» Lagrange’s Equation.
> Small Oscillations.

» Hamilton’s equations of motion.



System of Particles

With respect to a system of 3-dimensional coordinates, we
need 3n number of Independent variables to describe the
position of a system consisting of n number of particles.

If there are k number of constraints (restrictions ),
then we need only 3n-k number of independent
variables.

We define Degrees of freedom of the system as 3n-k.

By looking at the system we can define these
Independent variables and they are called generalized
coordinates and they are denoted by q,, q,,..., g, .



Lagrange’s Equations
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Suppose Y Is the position vector of the I particle and g; is the j”
generalized coordinate.
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Hence the result is proved.
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Suppose the system of particles changed slightly without changing
the time t then Eq 1 becomes

dr; _Z@r. dg;

Work done

dw = E Fi.dr; Here £, isthe external force on the
" particle.
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j= ori | /s called generalized
Here |Q;= > Fi oq, | Torce associated with
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coorainate q; .
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Since dq j are all inaependent above equation yielas
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Applying Newton’s 27 LawF; =m. ri (o the I'" particle
we have

Ei .aKi o %
oq; g







0 Z or, Z d (or,
= m. r — m.r;-
dt 8qj dt{ aq,

=1

When, - are app//ea’ In above
as as

equation, Irrea

This is called Lagrange’s equation of motion.



Special case
Suppose all the forces are conservative. I.e. there
exists a scalar function NN =V (Gy, 0y y.vovvevn.. Oy 1)

called potential function.

By the definition of the potential function = A =0.

oq;
Definition
Lagrangian or Lagrange’s Function L of the system

Is defined as the difference of Kinetic energy and the
Potential energy and denoted by L.

e, L=T7-V
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This Is the Lagrange’s equation
for a conservative system



E. g. (Question No, 1 ol;ﬁxercises ) ) )
A pﬁfflC/@ of mass rm moves In a conservative force

field. Find the Lagrangian and equations of motions In
cylindrical polar coordinates.
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X < Then r =0P
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S r=(rcos@—rsin@)i+(rsind+rcosd)j+zk
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L= ;m(r‘2 +1%0% +2%)-V(r,0,2)



S L= % m(r‘2 +120° + 22)—V(r,6’,z)
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E. {. ( Question No. 2 of Exercises )

Suppose that the particle, in the previous example moves
In the Oxy plane and V/=V/{(r) only. If at time (=0 the
particle on the Ox axis of distance a and the velocity of
the particle i1s v, In the direction of the positive Oy axis.
Find the velocity of the particle.

Solution :
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Hence rg—azvg % :—id—V(r).
dr r mdr
jr dr = (azvgr{%_;; (r)jd
;rz :—;azvg r12 — ;V(r)+C
o:—;azvgalz—;v(a)ﬂi
= C :;vg +;V(a)



2 2.2 1 1 , 2
= Vv =-a vor—z—ZaV(r)+vO —EV(a)
] ’) Vg y) ’) 2
ie. v :rZ(r —a )+m(v(a)—v(r)).

Now we have velocity as a function of the distance
from the origin. When the velocity potential function Is
given we can get the velocity using this equation.



