


Syllabus

 Introduction.

 Lagrange’s Equation.

 Small Oscillations.

 Hamilton’s equations of motion.



System of Particles

With respect to a system of 3-dimensional coordinates, we

need 3n number of independent variables to describe the

position of a system consisting of n number of particles.

If there are k number of constraints (restrictions ),

then we need only 3n-k number of independent

variables.

We define Degrees of freedom of the system as 3n-k.

By looking at the system we can define these

independent variables and they are called generalized

coordinates and they are denoted by q1, q2,…, qn .



Lagrange’s  Equations

Result  I

Suppose      is the position vector of the ith particle and qj is the jth

generalized coordinate.
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Proof : Since

Eq.  1
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Hence                            . 
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Result  II
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Proof :

Since im

N

m
m

i
i r

t
q

q

r
r















1




































t

r
q

q

r

qq

r i
m

N

m
m

i

jj

i 


1





































t

r

q
q

q

r

q

i

j

m

N

m
m

i

j



1


















































j

i
m

N

m
j

i

m q

r

t
q

q

r

q


1




















j

i

q

r

dt

d

Hence the result is proved.
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Result 1

Result 2

We have



Kinetic energy of the system is 
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Result 3

Result 4
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Suppose the system of particles changed slightly without changing

the time t then Eq. 1 becomes

Work done 
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Here        is the external force on the 

ith particle.
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is  called generalized 

force associated with 

generalized 

coordinate      .
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Since          are all independent above equation yields jdq

j

j
q

w
Q




 Eq. 2

Applying Newton’s 2nd Law                      to the ith particle 

we have
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 By Result 2
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When                       and                          are applied in above 

equation, it reads as 
Result 3 Result 4    
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This is called   Lagrange’s equation of motion.
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Special case
Suppose all the forces are conservative. i.e. there 

exists a scalar function                                                                

called potential function.
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By the definition of the potential function .0
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Definition

Lagrangian or Lagrange’s Function L of the system

is defined as the difference of Kinetic energy and the

Potential energy and denoted by L.

i.e. L = T - V
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Eq. 2
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 This is the Lagrange’s equation

for a conservative system



A particle of mass m moves in a conservative force

field. Find the Lagrangian and equations of motions in

cylindrical polar coordinates.

E.g. ( Question No. 1 of Exercises )

P-particle
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E.g. ( Question No. 2 of Exercises )
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Solution : 

The equations 

become

.o
dr

dV
mrrm 2     or

dt

d
m 2

Cr  2

Suppose that the particle, in the previous example moves

in the Oxy plane and V=V(r) only. If at time t=0 the

particle on the Ox axis of distance a and the velocity of

the particle is vo in the direction of the positive Oy axis.

Find the velocity of the particle.
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Now we have velocity as a function of the distance

from the origin. When the velocity potential function is

given we can get the velocity using this equation..


